

The Biting Patterns of *Anopheles* Mosquitoes from Three High Malaria Burden Districts in Malawi

Leonard Dandalo¹; Yemane Yihdego¹; Atusaye Simbeye²; Fred Sande²; Veronica Uzalili²; Nixon Kamanga²; Jomo Banda²; Martin Chiumia²; Jules Nahimana¹; Miriam Mokuena³; Xiomara Brown⁴; Pius Masache⁴; John Gimnig⁵; Jennifer Burnett¹; Jenny Carlson⁶; and Themba Mzilahowa²

¹Abt Associates, U.S. President's Malaria Initiative VectorLink Project, Malawi; ²Malaria Alert Centre, University of Malawi, ³Abt Associates, U.S. President's Malaria Initiative VectorLink Project, USA, ⁴President's Malaria Initiative/U.S. Agency for International Development, Malawi; ⁵Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention (CDC), USA; ⁶U.S. President's Malaria Initiative/U.S. Agency for International Development, USA, ⁷US President's Malaria Initiative VectorLink Project, Ghana

Background

- Malaria is one of the most important causes of morbidity and mortality in Malawi.
- Understanding the biting behavior of malaria vectors is essential in the selection, monitoring and evaluation of vector control interventions.
- This study assessed the biting patterns of malaria vectors in three high malaria burden districts of Malawi as a baseline for monitoring the impact of indoor residual spraying and long-lasting insecticidal nets.

Methods

- Anopheles human-biting patterns were monitored for four nights in two houses using human landing catches (HLCs) both indoors and outdoors every three months, from July 2018 to June 2019, from 4 sites in Salima, Nkhotakota and Nkhata Bay Districts (Figure 1). The same houses were visited during the 4 collection periods performed quarterly.
- Adult mosquitoes were morphologically identified to the species level and species specific by PCR.
- Plasmodium falciparum (Pf) sporozoite rates were determined by ELISA.

■ *An. funestus* s.l. was the most abundant species collected using HLC from all the three districts.

Figure 2: Aggregated *Anopheles* species composition from HLC collections in 4 sentinel sites

■ The highest number of *Anopheles* mosquitoes were collected from Sanga sentinel site, Nkhata-Bay.

Figure 3.

Mean number of *Anopheles* mosquitoes collected per month at each sentinel site

Results

- There were seasonal variations in Anopheles human biting rates (HBRs) recorded both indoors and outdoors.
- More mosquitoes were collected during the Sep 2018 quarterly collection than the three other quarters.

Figure 4. Mean *Anopheles* HBRs in the three districts

- In general, more biting occurred during the latter part or morning hours of the night for both *An. gambaie* s.l. and *An. funestus* s.l.
- About 24% An. funestus s.l. biting occurred indoors in Nkhotakota and Nkhata-Bay Districts between 6:00-11:00am.
- There was no distinct peak biting time for *An. coustani*.

Figure 5. The biting pattern of *An. gambiae* s.l. and *An. funestus* s.l. in the three districts (July 2018-June 2019)

- The highest annual entomological inoculation rate (EIR) of *An. gambiae* s.l. was estimated at 23.02 infective bites/person/night (ib/p/n) in Salima District.
- The highest *An. funestus* s.l. annual EIR was estimated at 83.7 ib/p/n in Nkhata-Bay District (Table 1).

Table 1. Entomological parameters of malaria transmission,

An. funestus s.l. and An. gambiae s.l. in
all the three districts, July 2018 – June 2019

District	Quarters	An. gambiae s.l.			An. funestus s.l.			Total
		Nightly EIR	Quarterly EIRs	Estimated Annual EIR=∑Quarterly EIRs	Nightly EIR	Quarterly EIRs		Estimated Annual EIR=∑Quarterly EIRs
Nkhata-Bay	Sep-Nov	0	0	0	0.21	19.1	83.7	83.7
	Dec-Feb	0	0		0.212	19.1		
	Mar-May	0	0		0.066	6. l		
	Jun-Aug	0	0		0.43	39.5		
Nkhotakota	Sep-Nov	0	0	3.932	0.425	38.7	47.9	51.83
	Dec-Feb	0	0		0.003	0.3		
	Mar-May	0.043	3.9		0.007	0.6		
	Jun-Aug	0	0		0.091	8.3		
Salima	Sep-Nov	0	0	23.02	0	0	14.5	37.5
	Dec-Feb	0.152	14		0	0		
	Mar-May	0.101	9.2		0.157	14.5		
	Jun-Aug	0	0		0	0		
								J

Conclusions

- An. gambiae s.l. morphologically identified were confirmed by PCR as An. arabiensis and An. gambiae s.s.
 All An. funestus s.l. were identified as An. funestus s.s.
- An. funestus s.s. is the primary vector of malaria based on the high sporozoite rates and Entomological Inoculation Rates recorded in all the three districts.
- An. funestus s.s. fed primarily indoors at night although a substantial proportion of indoor biting occurred between 6:00 and 11:00 am.
- Community education would be important to create awareness of the risk of indoor bites in the late morning hours.

