

U.S. President's Malaria Initiative

Protocol

BMJ Global Health

Combination of indoor residual spraying with long-lasting insecticidetreated nets for malaria control in Zambezia, Mozambique: a cluster randomised trial and cost-effectiveness study protocol

Carlos J Chaccour, 1,2 Sergi Alonso, 1,2 Rose Zulliger, 3 Joe Wagman, 4 Abuchahama Saifodine,⁵ Baltazar Candrinho,⁶ Eusébio Macete,² Joe Brew,¹ Christen Fornadel, Hidayat Kassim, Lourdes Loch, Charfudin Sacoor, Kenyssony Varela, Carty, Molly Robertson, Francisco Saute

BMJ Glob Health 2018;3:e000610. doi:10.1136/bmjgh-2017-000610

3GIRS Trial in Mozambique -Year 1 Entomology Summary

The PMI AIRS/VectorLink/Abt Mozambique team is leading both the IRS implementation and the enhanced entomological surveillance components of the CRT in Mopeia, with support from IVCC and PATH.

Maputo

Rose Zulliger (CDC)

Abuchahama Saifodine (USAID)

Rodaly Muthoni & Lourdes Loch (Abt)

Stephen Magesa

DC

Alison Belimvere

Zambezia

Kenyssony Varela

Rafael Nunes

Ines Mugawanha (DPS)

DC

Aklilu Seyoum

Dereje Dengela

Joe Wagman

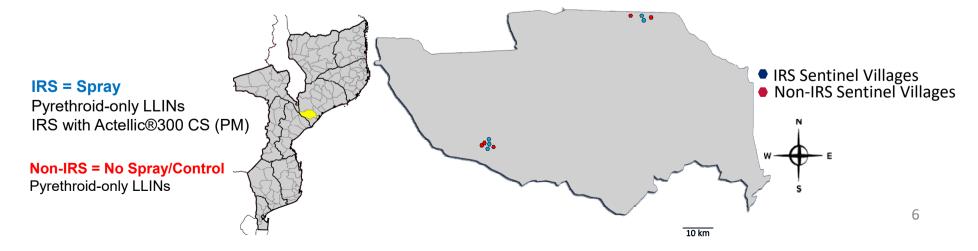
Molly Robertson

Jason Richardson

Christen Fornadel

Jennifer Armistead

- Background
 - Study setup and methods
 - Vector bionomics and residual efficacy of Actellic® 300CS
- Impact of IRS on
 - Total An. funestus densities (CDC LT)
 - Average number of An. funestus collected per trap-night (CDC LT)
 - Duration of significant reductions in exposure to An. funestus in IRS clusters
 - Similar trends in An. gambiae
- Summary and future directions
- Questions and discussion

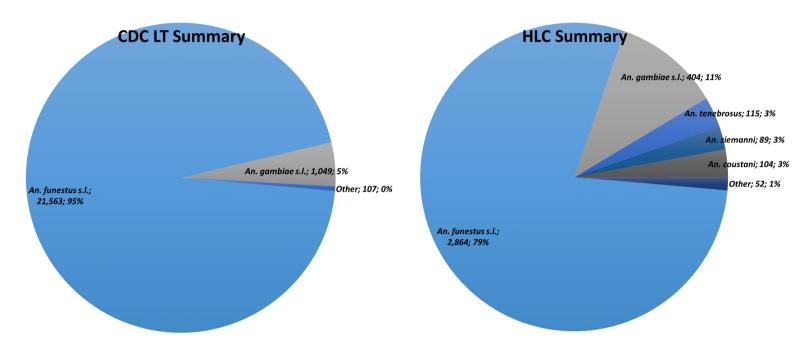

- Background
 - Study setup and methods
 - Vector bionomics and residual efficacy of Actellic® 300CS
- Impact of IRS on
 - Total An. funestus densities (CDC LT)
 - Average number of An. funestus collected per trap-night (CDC LT)
 - Duration of significant reductions in exposure to An. funestus in IRS clusters
 - Similar trends in An. gambiae
- Summary and future directions
- Questions and discussion

Entomological Surveillance Setup

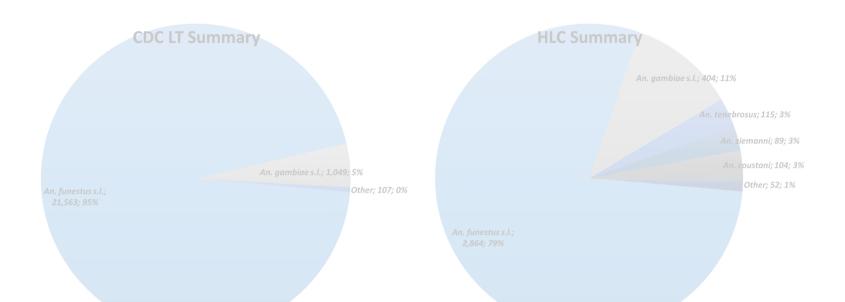
Ten sites, five from IRS clusters and five from non-IRS clusters

IRS Clusters				
Village	Village Population	Sentinel houses - CDC LT	Sentinel houses - HLC	
Eduardo Mondlane	4600	8	1	
7 de Abril	2300	8	1	
4 de Outubro	2200	8	1	
25 de Junho	2300	8	1	
Paz	700	8	-	

Non-IRS Clusters				
Village	Village Population	houses -	Sentinel houses -	
Zona Verde	3600	CDC LT 8	HLC 1	
A Luta Continua	1500	8	1	
Lua Lua Sede	1300	8	-	
Josina Machel	1000	8	1	
Mirrongone	400	8	1	



Entomological Surveillance Methods


Vector Bionomics

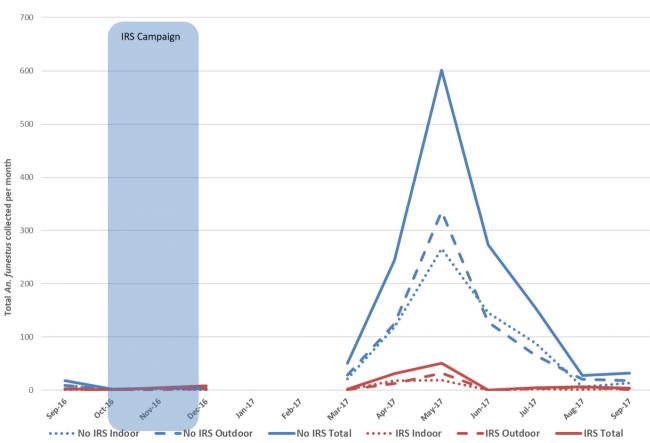
An. funestus s.l. was the most abundant vector by far

• 97% of all *An. funestus* s.l. tested were *An. funestus* s.s. (3,300/3,416 screened)

Vector Bionomics

An. funestus s.l. was the 97% of all An. funest (3,300/3,416 screene)

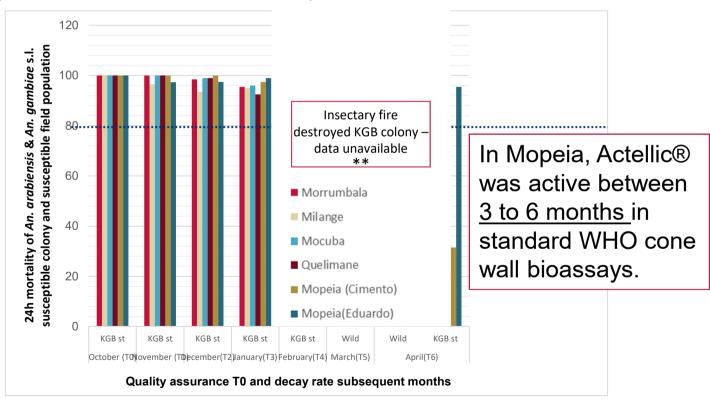
6,097 mosquitoes from 14 species were screened for Plasmodium DNA


146 were positive for P. falciparum

- 137 (94%) were *An. funestus* s.s.; sporozoite rate = 2.7%
- 3 (2%) were An. rivulorum; sporozoite rate = 2.5%
- 2 (1.5%) were An. gambiae s.s.; sporozoite rate = 2.4%
- 2 (1.5%) were An. coustani; sporozoite rate = 2.0%

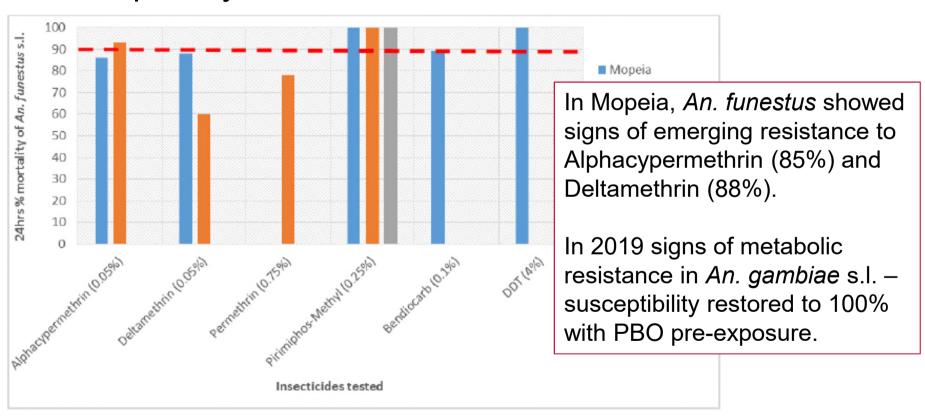
From: The PMI Africa Indoor Residual Spraying Project (PMI AIRS). April 2017. *Mozambique*: *Entomological Monitoring Progress Report*. Maputo, Mozambique: PMI AIRS, Abt Associates The PMI Africa Indoor Residual Spraying Project (PMI AIRS). April 2018. *Mozambique*: *Entomological Monitoring Progress Report*. Maputo, Mozambique: PMI AIRS, Abt Associates

Vector Bionomics – Indoor and Outdoor Feeding


Monthly trends in total *An. funestus* collected via HLC by spray status.

92% fewer were collected from IRS houses

The trend was the same for mosquitoes collected indoors and outdoors


Susceptibility and Residual Efficacy Tests

Residual efficacy of Actellic® 300CS (WHO wall cone test)

Susceptibility and Residual Efficacy Tests

Susceptibility of *An. funestus* s.l. - 2017

Red line indicates mortality below 90% are resistant mosquitoes

Vector Bionomics Summary

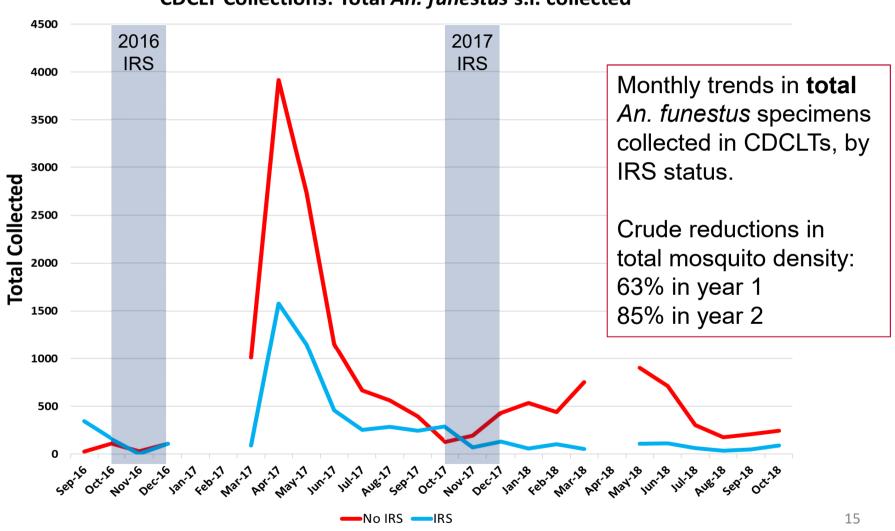
An. funestus s.l. was the primary vector in Mopeia during the trial

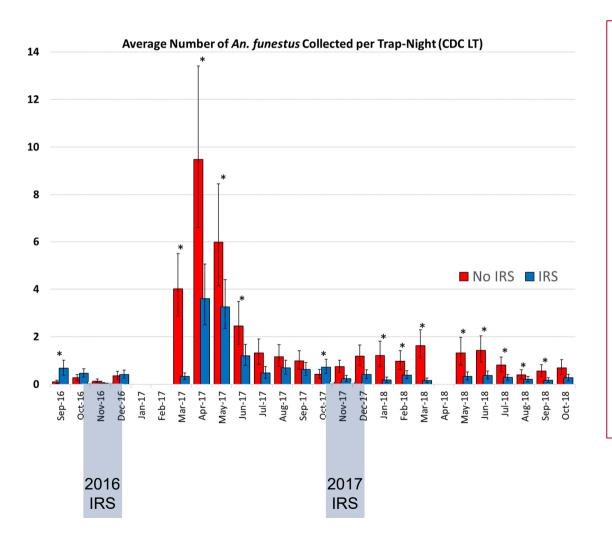
Moderate resistance to pyrethroids (85 – 90% mortality in WHO tube tests)

100% susceptibility to Actellic

Actellic residual efficacy 3 – 6 Months (WHO wall cone tests) Equally likely to feed indoors or outdoors during HLC (*Impact of IRS was the same both indoors and outdoors*)

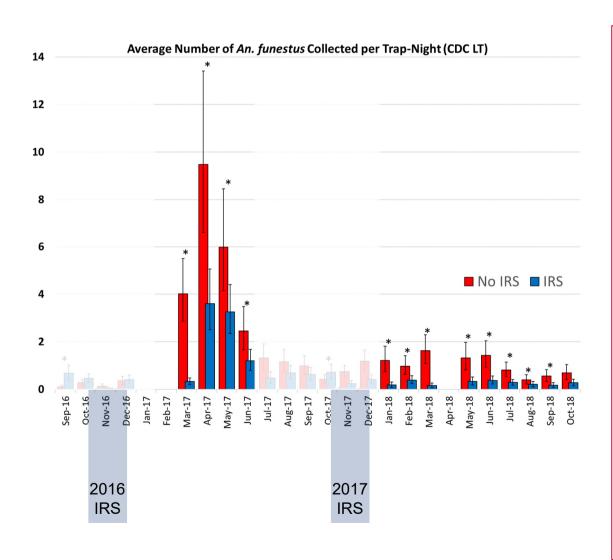
LLIN use was similar in IRS and non-IRS villages


(both before [60 - 67%] and after [92 – 93%] a July 2017 mass distribution campaign)


- Background
 - Study setup and methods
 - Vector bionomics and residual efficacy of Actellic® 300CS
- Impact of IRS on
 - Total An. funestus densities (CDC LT)
 - Average number of An. funestus collected per trap-night (CDC LT)
 - Duration of significant reductions in exposure to An. funestus in IRS clusters
 - Similar trends in An. gambiae
- Summary and future directions
- Questions and discussion

Impact of IRS – An. funestus Adult Densities

Impact of IRS – An. funestus Adult Densities



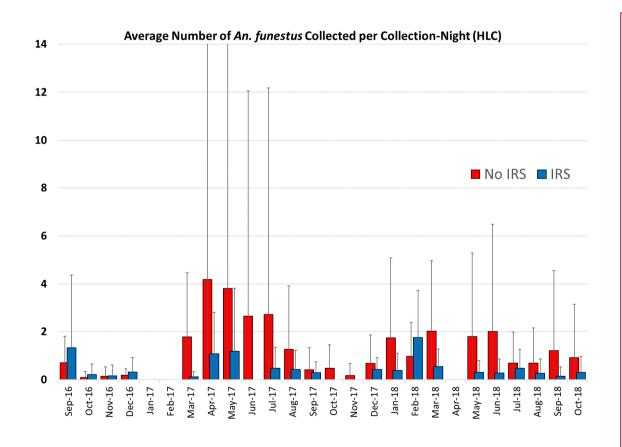
Monthly differences in the mean number of *An. funestus* collected in CDCLTs **per trap night** between non-IRS and IRS sites.

Averages are the geometric mean number of mosquitoes collected per trap-night.

* = significant difference Reductions were greatest in the months shortly after the end of the spray campaigns, with reductions of close to 90%.

Impact of IRS – An. funestus Adult Densities

Monthly differences in the mean number of *An. funestus* collected in CDCLTs **per trap night** between non-IRS and IRS sites.

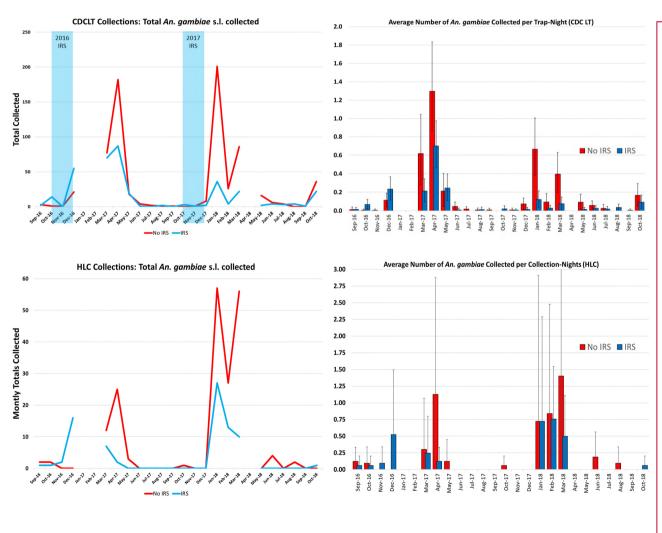

Averages are the geometric mean number of mosquitoes collected per trap-night.

* = significant difference Reductions were greatest in the months shortly after the end of the spray campaigns, with reductions of close to 90%.

The significant impact of IRS lasted for at least:

6 months in year 1 9 months in year 2

An. funestus – IRS Impact on HLC Nightly Densities



Monthly differences in the mean number of *An. funestus* collected per night by HLC, between non-IRS and IRS sites.

Means presented are the geometric mean number of mosquitoes collected per collection-night.

Overall reductions were larger than those observed with the CDC LTs, but also more variable – too few mosquitoes collected for a robust interpretation.

Impact on *An. gambiae*

All the trends observed in the *An. funestus* population were similar in *An. gambiae*, even though:

- Substantially fewer
 An. gambiae were
 collected throughout
 the entire study
- Numbers are too few for any robust statistical analysis
- Some evidence that An. gambiae was a secondary vector during the trial (1.5% of all Pf positive mosquitoes)

- Background
 - Study setup and methods
 - Vector bionomics and residual efficacy of Actellic® 300CS
- Impact of IRS on
 - Total An. funestus densities (CDC LT)
 - Average number of An. funestus collected per trap-night (CDC LT)
 - Duration of significant reductions in exposure to An. funestus in IRS clusters
 - Similar trends in An. gambiae
- Summary and future directions
- Questions and discussion

Summary and Future Work

The IRS campaigns in Mopeia had a substantial impact on reducing exposure to *An. funestus*

63% - 80% fewer

An. funestus in indoor CDCLT collections from IRS clusters vs. non-IRS clusters

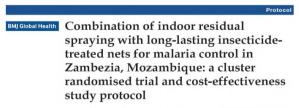
More than 80%
fewer An. funestus
collected during
HLCs in IRS clusters
vs. non-IRS clusters
(*Impact was similar in
both indoors and
outdoors*)

Significant reductions maintained for several months
At least
6 months in 2017
At least
9 months in 2018

Though not implicated as primary malaria vector during the trial, the same trends were observed in the *An. gambiae* s.l. population

Summary & Future Work

- Molecular screening of mosquito samples is still ongoing
 - Hoping for a more accurate determination EIR and trends in transmission exposure
- Aligning these entomological results with the epidemiological results
 - Convincing evidence of significant additional protection against malaria when using 3GIRS in addition to standard (pyrethroid-only) LLINs in Mopeia



Carlos J Chaccour, ¹² Sergi Alonso, ¹² Rose Zulliger, ³ Joe Wagman, ⁴ Abuchahama Saifodine, ⁵ Baltazar Candrinho, ⁶ Eusébio Macete, ² Joe Brew, Christen Fornadel, ⁷ Hidayat Kassim, ⁸ Lourdes Loch, ⁹ Charfudin Sacoor, ² Kenyssony Varela, ⁹ Cara L Carty, ⁴ Molly Robertson, ^{2,4} Francisco Saute²

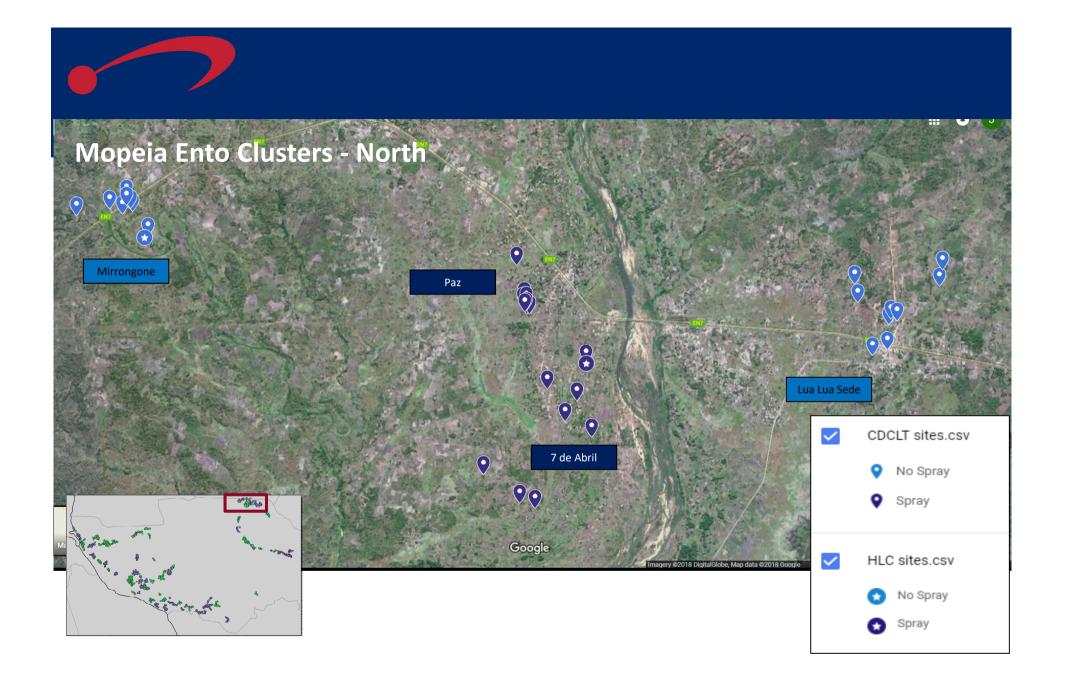
Questions and Discussion

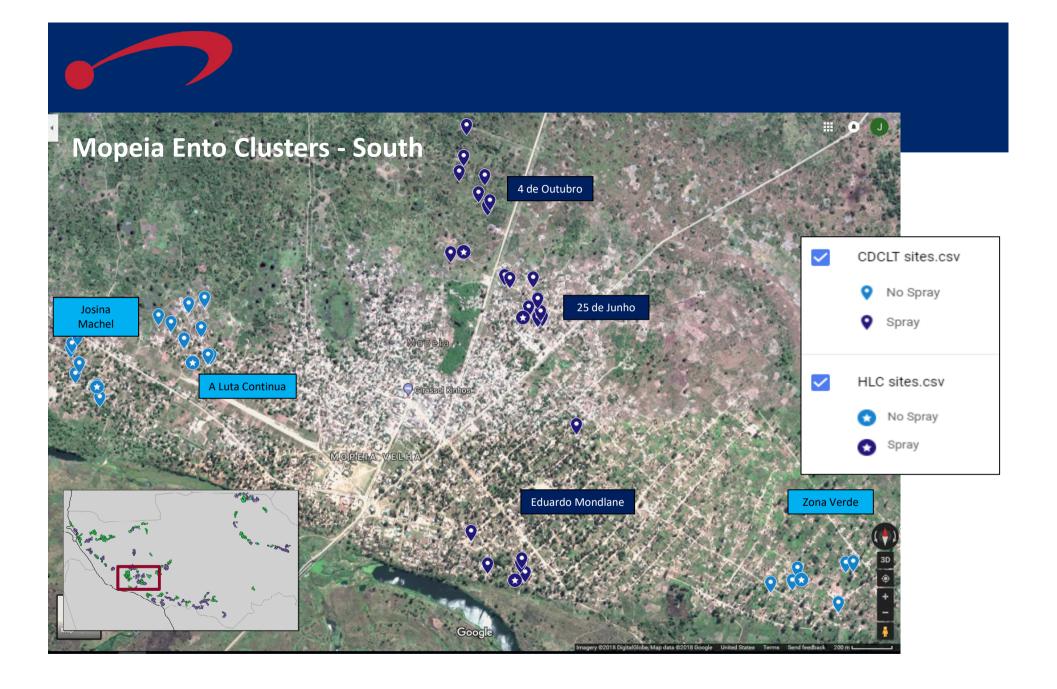
Thank you, Obrigado, Merci!

Protoco

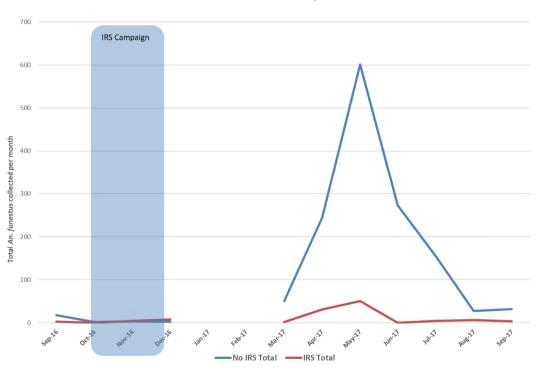
Spraying with long-lasting insecticidetreated nets for malaria control in Zambezia, Mozambique: a cluster randomised trial and cost-effectiveness study protocol

> Carlos J Chaccour, ^{1,2} Sergi Alonso, ^{1,2} Rose Zulliger, ³ Joe Wagman, ⁴ Abuchahama Saifodine, ⁶ Baltazer Candrinho, ⁶ Eusébio Macete, ² Joe Brew, ¹ Christen Fornadel, ⁷ Hidayat Kassim, ⁸ Lourdes Loch, ⁹ Charfudin Saccor, ² Kenyssony Varela, ⁹ Cara L Carty, ⁴ Molly Robertson, ^{4,4} Francisco Saute⁶

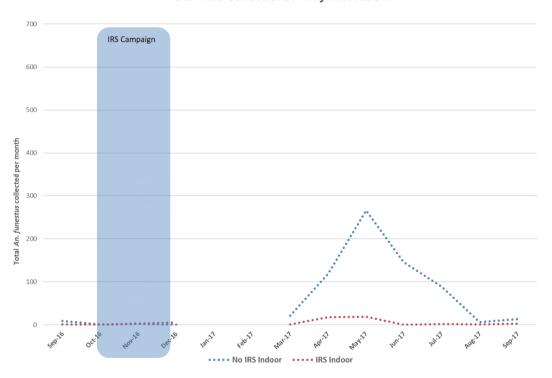



U.S. President's Malaria Initiative

Backup Slides



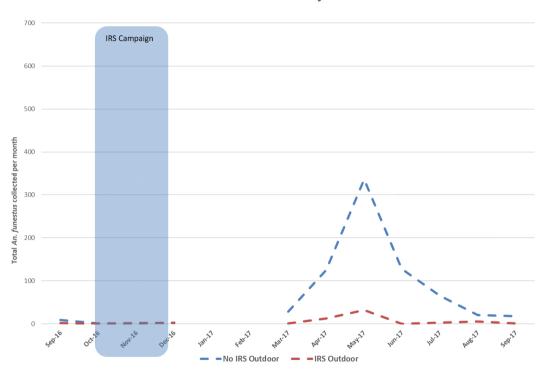
Vector bionomics - Indoor & Outdoor feeding


Monthly trends in total *An. funestus* collected via HLC by spray status.

Looking at all mosquitoes (collected indoors and outdoors) – **92% fewer were collected from IRS houses**

Vector bionomics - Indoor & Outdoor feeding

Total HLC Collections: An. funestus s.l.


Monthly trends in total *An. funestus* collected via HLC by spray status.

The trend was the same for mosquitoes collected indoors...

Vector bionomics - Indoor & Outdoor feeding

Monthly trends in total *An. funestus* collected via HLC by spray status.

The trend was the same for mosquitoes collected indoors...and outdoors