

U.S. President's Malaria Initiative

Anopheles gambiae s.l. Kdr Polymorphism and Plasmodium falciparum Carriage in Zimbabwe

Brenda Makonyere⁵; Aramu Makuwaza¹; Nobert Mudare¹; Joel Mouatcho²; Shadreck Sande²; Hieronymo Masendu²; Noe Rakotondrajaona³; Joseph Mberikunashe⁶; Sungano Mharakurwa¹

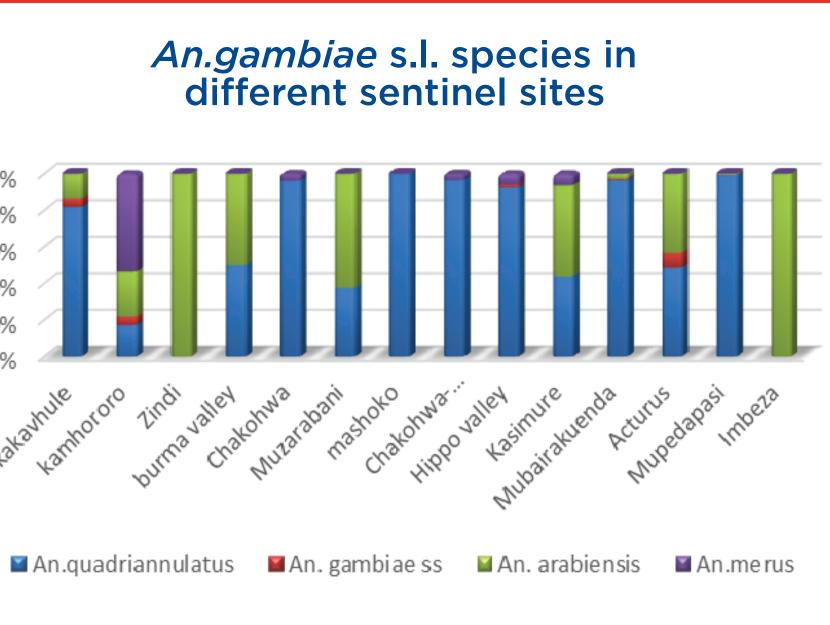
¹Africa University, Zimbabwe; ²VectorLink Zimbabwe; ³Zimbabwe; ³Zimbabwe; ³Zimbabwe; ³Zimbabwe; ³Zimbabwe; ³Zimbabwe; ³Zimbabwe; ³Zimbabwe; ³Zimbabwe; ⁴President's Malaria, Zimbabwe; ³Zimbabwe; ³Zimbabwe; ⁴President's Malaria, Zimbabwe; ⁴Presiden and Child Care, Zimbabwe

Background

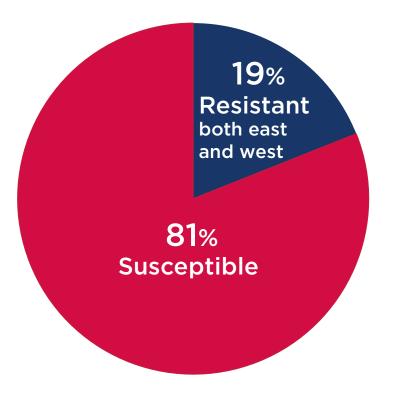
- Malaria remains a life-threatening disease in most parts of Africa including Zimbabwe.
- The mainstay national malaria control programme interventions include prompt case management and vector control through indoor residual spraying and provision of long-lasting insecticidal nets.
- The effectiveness of vector control interventions can be affected by the development of resistance in mosquitoes under selection pressure from insecticide use.

Main Objective

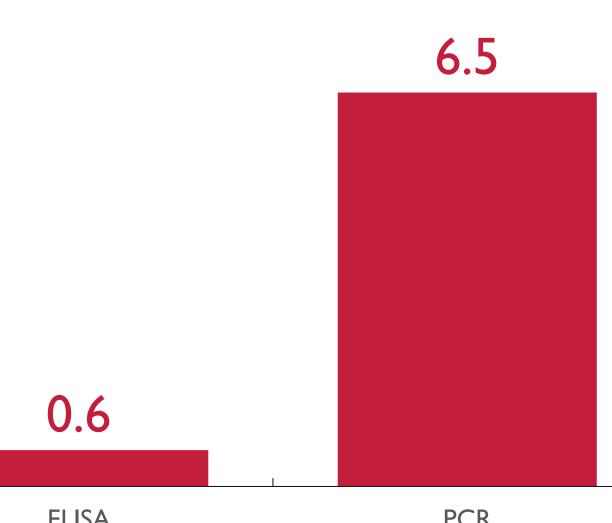
To examine the association between the knockdown resistance (*Kdr*) genotype and *Plasmodium falciparum* infection rate among wild An. gambiae s.l. vector mosquitoes.


Methods

- 1518 adult mosquitoes collected from 14 sentinel sites were morphologically identified by entomologists.
- Confirmatory molecular identification conducted using the Wilkins vector sibling species differentiation PCR protocol.
- All vector mosquitoes were subjected to PCR for detection of the Vgsc- L1014F and Vgsc-L1014S knock down resistance alleles.
- P. falciparum sporozoite infection among the An. gambiae s.l. was detected using circumsporozoite ELISA and confirmed by PCR.


ies	100%	
Species	80%	
s S	60%	
hele	40%	
% Anopheles	20%	
AD	0%	
%	makaka	while tarnh

	7	Γ
	6	_
(%) é	5	-
Sporozoite rate	4	-
rozoi	3	-
Spo	2	-
	I	_
	0	



Resistance distribution

P. falciparum infection rate (%)

Plasmodium sporozoite infection status by vector by Kdr East genotype

Vector	<i>Kdr</i> East genotype	P. falciparum			
		Positive	Negative	Total	Р
An. arabiensis	Mutation present	1 (16.7%)	5 (83.3%)	6 (100%)	
	Wild type	71 (19.3%)	296 (80.7%)	367 (100%)	
	Total	72 (93.3%)	301 (80.7%)	373 (100%)	1.000
An. gambiae ss	Mutation present	0 (0.0%)	2 (100%)	2 (100%)	
	Wild type	0 (0.0%)	12 (100%)	12 (100%)	
	Total	0 (0.0%)	14 (100%)	14 (100%)	-
An. quadriannulatus	Mutation present	2 (15.4%)	11 (84.6%)	13 (100%)	
	Wild type	20 (6.0%)	313 (94.0%)	333 (100%)	
	Total	22 (6.4%)	324 (93.6%)	346 (100%)	0.435
An. merus	Mutation present	0 (0%)	0 (0%)	0 (0%)	
	Wild type	4 (1.7%)	232 (98.3%)	236 (100%)	
	Total	4 (1.7%)	232 (98.3%0	236 (100%)	-
TOTAL	Mutation present	3 (14.3%)	18 (85.7%)	21 (100%)	
	Wild type	95 (10.0%)	853 (90.0%)	948 (100%)	
	Total	98 (10.1%)	871 (89.9%)	969 (100%)	0.783

An. gambiae s.l. Kdr polymorphism by species

Species	<i>Kdr</i> East wild type	<i>Kdr</i> East mutated	<i>Kdr</i> West wild type	<i>Kdr</i> West mutated
<i>An. gambiae</i> ss (N=18)	88.9%	11.1%	100.0%	0.0%
An. arabiensis (N=397)	98.5%	1.5%	99.7%	0.3%
<i>An. quadriannulatus</i> (N=553)	97.6%	2.4%	98.9%	1.1%
<i>An. merus</i> (N=236)	100.0%	0.0%	49.1%	50.9%

Individual primary and secondary An. gambiae s.l. vectors that bore the *kdr*-resistant alleles were found with lower sporozoite carriage than their counterparts that bore the *Kdr* wild type susceptible allele but the data did not attain statistical significance, possibly due to small numbers of mutants.

ELISA

PCR

Results

Vector	<i>Kdr</i> West	P. falciparum		Total	
	genotype	Positive	negative	Total	Р
An. arabiensis	Mutation present	0 (0.0%)	1 (100.0%)	1 (100%)	
	Wild type	72 (19.5%)	298 (80.5%)	370 (100%)	
	Total	72 (19.4%)	299 (80.6%)	371 (100%)	1.000
An. gambiae ss	Mutation present	0 (0.0%)	0 (0%)	0 (0%)	
	Wild type	0 (0.0%)	12 (100%)	12 (100%)	
	Total	0 (0.0%)	12 (100%)	12 (100%)	_
An. quadriannulatus	Mutation present	1 (20.0%)	4 (80.0%)	5 (100%)	
	Wild type	21 (6.1%)	325 (93.9%)	346 (100%)	
	Total	22 (6.3%)	329 (93.7%)	351 (100%)	0.729
An. merus	Mutation present	3 (2.5%)	116 (97.5%)	119 (100%)	
	Wild type	1 (0.9%)	114 (99.1%)	115 (100%)	
	Total	4 (1.7%)	230 (98.3%)	234 (100%)	0.638
TOTAL	Mutation present	4 (3.2%)	121 (96.8%)	125 (100%)	
	Wild type	94 (11.2%)	749 (88.8%)	843 (100%)	
	Total	98 (10.1%)	870 (89.9%)	968 (100%)	0.006

Kdr frequencies are high.

Plasmodium sporozoite infection status by vector by Kdr West genotype

Conclusions

Further studies are required to establish the association of resistant kdr mosquito variants and sporozoite infection rate in areas where the primary vectors of malaria are dominant and

